
Mon. Not. R. Astron. Soc. 360, 69–75 (2005) doi:10.1111/j.1365-2966.2005.08930.x

Applying machine learning to catalogue matching in astrophysics
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ABSTRACT
We present the results of applying automated machine learning techniques to the problem
of matching different object catalogues in astrophysics. In this study, we take two partially
matched catalogues where one of the two catalogues has a large positional uncertainty. The
two catalogues we used here were taken from the H I Parkes All Sky Survey (HIPASS) and
SuperCOSMOS optical survey. Previous work had matched 44 per cent (1887 objects) of
HIPASS to the SuperCOSMOS catalogue.

A supervised learning algorithm was then applied to construct a model of the matched
portion of our catalogue. Validation of the model shows that we achieved a good classification
performance (99.12 per cent correct).

Applying this model to the unmatched portion of the catalogue found 1209 new matches.
This increases the catalogue size from 1887 matched objects to 3096. The combination of
these procedures yields a catalogue that is 72 per cent matched.
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1 I N T RO D U C T I O N

The Virtual Observatory will bring new opportunities and new chal-
lenges. Our study works with a problem that may become typical in
the Virtual Observatory context: the problem of matching catalogues
with significant positional uncertainties.

The Virtual Observatory will allow efficient access to the vast
amounts of data being collected by all sky surveys in many wave-
lengths. A fundamental operation for increasing the utility of this
data will be the matching of catalogues. Matching catalogues will
utilize many components of the Virtual Observatory. The main task
of these services will be to perform a fuzzy (probabilistic) distributed
spatial join. Distributed computing is required so that catalogues can
be published at appropriate sites all over the world. Special indexes
have also been developed to aid in doing fast spatial joins; at present
Open SkyQuery (Budavári et al. 2004) is leading progress towards
making this a reality. The study reported in this paper is focused on
the fuzzy or probabilistic component of this problem. That is, for a
given source, how is the correct counterpart chosen out of a number
of candidate matches within the error ellipse? Supervised learning
techniques have already been applied to the astronomy problems of
star–galaxy classification (Bertin & Arnouts 1996; Andreon et al.
2000), galaxy morphology classification (Bazell & Aha 2001) and
the search for quasars in photometric data (Richards et al. 2001). A
review paper of astronomical applications in machine learning can
be found in Tagliaferri, D’Argenio & Incoronato (2003). Both within
astronomy and in other applications, the focus of supervised learn-
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ing techniques is on regression or pattern classification. The specific
type of pattern classification problem (the matching problem) that
we consider here is reasonably novel and the authors believe war-
rants further attention. A related, but underdeveloped field in com-
puter science is the problem of record linkage (Fellegi & Sunter
1969). The solution to the problem of matching catalogues is likely
to have an impact on record linkage, which demonstrates just one
way that the development of the Virtual Observatory may impact
on fields outside astronomy. Borrowing from computer science, this
paper uses the term linkage to refer to the problem of resolving the
ambiguity in the matching problem. We draw the distinction be-
tween this problem and the computational and network problems
associated with matching catalogues. The data base term of joining
suggests itself as being appropriate for describing catalogue match-
ing problems focused on the computational or distributed nature of
the problem. In this paper, we focus on the problem of linkage.

A number of simple approaches to linkage are commonly used
in astronomy. Often taking the closest match (in terms of position
only) is considered adequate especially when the positional uncer-
tainties are small, for example Drinkwater et al. (1997; positional
uncertainties are of the order of arcseconds). Another more sophis-
ticated technique, the likelihood ratio, compares the probability that
the object is a match with the probability that it is a chance back-
ground object (Sutherland & Saunders 1992). The likelihood ratio
itself only utilizes a small number of parameters (and only those
from the more dense catalogue).

Our work uses supervised learning techniques from machine
learning in order to link these two catalogues using all available
information. Our overall goal is to provide a proof of concept that the
full parameter list (or an intelligently chosen subset) contains useful
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information that can be used to reliably link catalogues. While a sim-
ple method of performing linkage using a simple supervised learn-
ing algorithm (decision trees) has been previously demonstrated by
Voisin & Donas (2001), no follow up work on the topic has been
published. This study offers a more complete treatment of the prob-
lem in a number of ways. External information is used to construct
the training set; Voisin & Donas simply used a cut on proximity to
assign labels. We also analyse the scientific implications of different
matching algorithms, and investigate different and arguably more
powerful algorithms.

The linkage method we propose is well suited to a certain class
of problem. First of all, there must be a significant linkage problem;
the positional uncertainty of one catalogue must be large enough
that there are frequently multiple candidate links in the more dense
catalogue. This method also requires that there is a minimum and
maximum amount of information available. There must be a signifi-
cant subset of the catalogues that is already linked; this is vital for us
to pursue a supervised learning procedure. It is also important that
a significant subset of the catalogue remains unlinked in order for
the procedure to cause a significant increase in the catalogue size.

The problem we discuss here involves joining a catalogue with
comparatively poor positional uncertainties (HIPASS catalogue,
HICAT, Meyer et al. 2004) to a catalogue with good positional
uncertainties (SuperCOSMOS, Hambly et al. 2001). In general, the
positional resolution of the survey affects both the positional un-
certainties and the density of sources per unit area of sky. In this
study, the SuperCOSMOS catalogue is the more dense catalogue and
HICAT is the sparse catalogue. A general statement of our problem
is for each object in the sparse catalogue to choose the correct coun-
terpart from the dense catalogue. While it is not guaranteed that
there is a single link in the dense catalogue, we are only dealing
with the cases where we assume this to be true.

In this paper, we extend the work previously presented in Rohde
et al. (2004) by considering the output (new matches) of the match-
ing procedure that we have developed. This work is also applied to
the final version of the HIPASS Optical Catalogue (HOPCAT).

This paper has the following structure. Section 2 discusses the
problem domain that we are investigating (in particular the cata-
logues involved). Section 3 discusses the construction and valida-
tion of the model. Section 4 discusses how we apply the model
to the unmatched portion of HOPCAT in order to match a further
1209 objects. Section 5 concludes by making some overall com-
ments about our results.

2 P RO B L E M D O M A I N A N D C ATA L O G U E
D E TA I L S

2.1 HICAT

The H I Parkes All Sky Survey (HIPASS) is a survey of the entire
southern sky for H I. The HICAT (Meyer et al. 2004) was produced
by signal processing software run over the HIPASS data cubes. The
result of this catalogue is 4315 H I sources with accurate redshifts
and significant positional uncertainties where (RA has a σ = 0.78
arcmin; Zwaan et al. 2004). HICAT describes each source using
many parameters, the most important of these are velocity, peak
flux (Sp), integrated flux (Sint) and velocity width.

2.2 SuperCOSMOS

SuperCOSMOS is a survey of the entire southern sky on photo-
graphic plates taken by the UK Schmidt Telescope. This is imaging
data and as such has accurate positions but no redshift.

A catalogue has been produced of the SuperCOSMOS Images;
the description of the image processing used to extract this catalogue
is described in Hambly, Irwin & MacGillivray (2001). For this ap-
plication it was decided that it was best to reprocess the images
using the SEXTRACTOR package (Bertin & Arnouts 1996) to obtain
better segmentation. The SuperCOSMOS parameters are area, semi-
major axis, semiminor axis, Bj (mag), R (mag) and I (mag). This
catalogue contained a large number of stars, which obviously were
non-matching: for this reason, it was decided to also provide a star–
galaxy classification. SEXTRACTOR can only provide star–galaxy sep-
aration using its built-in neural network when the images are from a
CCD rather than a photographic plate. For this reason, the following
two-step procedure was used to obtain classes. Diffraction spikes
were observed as an obvious feature to assist in star–galaxy classi-
fication. Software was written using the CFITSIO library, which anal-
ysed the images and measured the length of the spikes of all objects.
A training set was then constructed of 1000 galaxies and 1000 stars
and a support vector machine (SVM; see Section 3.3) was trained to
classify these objects using all of the previously mentioned Super-
COSMOS features as well as the diffraction spike feature. The use of
machine learning techniques has been common place for the prob-
lem of star–galaxy classification for some time (Bertin & Arnouts
1996; Tagliaferri et al. 2003). Using a cross-validation methodol-
ogy, where the algorithm is tested on data that it was not trained
on, the star–galaxy classifier was able to show a performance of
88 per cent.

2.3 HOPCAT

A complementary study by Doyle et al. (in preparation) produced
HOPCAT, which matched 1887 of the 4315 HICAT sources. The
procedure for matching involved joining the optical candidates to
redshift observations taken from the Six Degree Field survey (6dF;
Wakamatsu et al. 2003) and the NASA/IPAC Extragalactic Database
(NED). If all of the optical candidates had redshift information and
if there was exactly one object matching the HICAT redshift then it
was deemed to be a match. Please see Doyle et al. (in preparation)
for more details.

This procedure allowed the matching of many HICAT sources to
optical counterparts. It is however a slow procedure requiring heavy
human intervention and it also was inconclusive in cases where there
was no additional redshift information from 6dF or NED.

3 C O N S T RU C T I O N A N D VA L I DAT I O N
O F M O D E L

While supervised learning algorithms automate much of the model
construction process, human judgment must be used at a number
of steps. The choice of input variables must be made for the al-
gorithm: this procedure is known as feature selection. There is no
correct procedure for doing this, except to call upon human judg-
ment. Learning algorithm performance is generally improved by the
choice of a small but informative set of features.

Closely related to feature selection is the preprocessing of input
variables. For example, is it advantageous to provide raw magnitudes
or colour index information? If the distribution of a variable is not
uniform, it may be advantageous to transform it prior to learning.

In this study, a number of algorithms will be attempted and a
procedure known as 10-fold cross-validation is used to estimate the
generalization performance of these models (see Section 3.3). The
best of these models is selected and performance is reported.
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3.1 Feature selection

In order for an optical parameter to be useful, it must convey some
useful information, either a relation between the optical parameter
and radio parameters or something that will identify that the object is
a galaxy likely to be a strong H I source. In contrast, a radio parameter
is only useful if it can be used to identify a relation between radio and
optical parameters. The asymmetry above is a result of the fact that
there are many optical candidate matches for a single radio object.

In machine learning, the parameters that are selected to build a
model are called features. The rationale for our choice of features is
as follows: log area and Bj (mag) should be roughly correlated with
log peak flux (Sp) and log integrated flux (Sint). Velocity is also a
measure of distance so an inversely proportional relationship would
be expected between velocity and either area or magnitude. We
would expect highly elliptical optical objects to link with radio ob-
jects with high velocity widths. It was unclear if galaxy colour would
contribute to the classifier, although it may be a means of detecting
late-type galaxies that are likely to contain significant amounts of
H I.

The only parameter not mentioned is separation: this is obviously
useful as we would expect objects with low separation to be more
likely to be matches.

The logarithm was taken of integrated flux, peak flux and area so
that these would all roughly correlate with magnitude. A list of all
the features selected as machine learning inputs is given in Table 1.

3.2 Framing the matching problem as a pattern
classification problem

The matching problem is not framed automatically as a pattern clas-
sification problem. In order to make it one, we combine inputs of
radio and optical objects into a single vector. If the pair of objects are
matching then the vector gets a positive label, otherwise the pair is
given a negative label. The negative training points are determined
by taking all the non-matching objects from the dense catalogue
and pairing them with the respective object in the sparse catalogue.
We also employ a mismatched set of negative examples, which is
discussed later.

It is normal to report the error on both the negative and the posi-
tive parts of the training set separately. This is particularly helpful in
situations where the amount of positive and negative training data
is unbalanced (we have 6.3 negative examples for every positive).
If a classifier was to always give a negative response, it would triv-
ially give a classification of 6.3

7.3 or 86 per cent over all examples:
0 per cent on the positive data and 100 per cent on the negative.

Table 1. Selected features for machine learning inputs.

Feature Origin Name

1 Radio–optical Separation
2 Radio Velocity
3 Radio Velocity width
4 Radio Log integrated flux (Sint)
5 Radio Log peak flux (Sp)
6 Optical Log isophotal area
7 Optical Semimajor axis
8 Optical Semiminor axis
9 Optical Bj (Magnitude)

10 Optical Bj − R
11 Optical Bj − I
12 Optical Star–galaxy classification

For this reason, the performance on the positive and negative data is
reported separately. In order to avoid the inclusion of massive num-
bers of small and faint objects, only objects with an area greater
than 600 pixel were included in this study.

Here, we report success rates rather than error rates. Error
rates over the negative data are known as false positives and er-
ror rates over the positive data are known as false negatives. False
positives and false negatives are related to traditional measures of
completeness and efficiency. Both completeness and false negatives
refer to the objects that are lost from the sample as a result of mis-
classification. Likewise, efficiency and false positives refer to the
incorrect objects that are found in our sample.

In this situation, the relationships between completeness and false
negatives, and efficiency and false positives are complicated by the
framing of the problem in terms of binary pattern classification. In
this situation, the classifier is not constrained to give exactly one
match; the ‘combinatorial’ nature of the output causes there to be
no direct relationship between completeness and false negatives,
and efficiency and false positives.

3.3 Model selection

There are a number of supervised learning algorithms that are ap-
propriate to apply to this problem. One is the SVM. The SVM
computes a non-linear mapping that transforms its input data into a
high-dimensional feature space where patterns of different classes
can be separated by a hyperplane (Vapnik 1995). The software being
used is SVM LIGHT (Joachims 1998); this software is free for scientific
use. Support vector machines (SVMs) have a number of parame-
ters that can be tuned for optimal performance, including the kernel
function. Kernel functions map the data to a high-dimensional fea-
ture space. The SVM searches for a function that is linear in this
high-dimensional space, but non-linear in input space to separate
these two classes. Popular kernels include linear, polynomial and
radial basis functions (RBF; Schlkopf & Smola 2002).

SVMs also allow the soft margin (Cristianini & Shawe-Taylor
2000) to be adjusted, which is a parameter that controls the trade-
off between smooth and overly complex functions. Controlling
this trade-off is necessary to obtain good generalization. Func-
tions that represent the training data well but do not generalize to
novel examples are said to have overfit the data in machine learn-
ing terminology. The soft margin is a tool for the SVM to avoid
overfitting.

Another popular and older algorithm is the neural network
(Bishop 1995). Neural networks are functions with a network-like
topology and many free parameters. A gradient descent optimiza-
tion algorithm is used to partially search the parameter space for
a suitable representation of the data. There are a countless number
of heuristics for improving or altering the performance of neural
networks, however in this study we implement the simplest of these
algorithms, i.e. backpropagation. The neural network is used with
3, 4, 5 and 6 hidden units. A neural network without any hidden
units (the perceptron) is also used.

There is no way to know a priori which algorithm will give the best
performance. The recommended procedure is to run a battery of tests
using a good selection of candidate algorithms and parameters and
measure the generalization ability of each. An effective method for
getting an accurate measure of generalization ability is the 10-fold
test. This involves dividing the training data into 10 equal parts, an
algorithms is then trained on 9 of the subsets and tested on the 10th.
This procedure is repeated 10 times in order to average this result
over the entire data set. The model that gave the best generalization
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should then be selected. This procedure is known as cross-validation.
Table 1 shows the generalization performance of multiple learning
algorithms with different parameters. The SVM has different kernels
(linear, polynomial and RBF) and different soft margins (0.1, 1 and
10). The neural networks have a different number of hidden units
(free parameters). Each network was trained for 1000 iterations
(epochs).

3.4 Model performance

Running a battery of different algorithms showed that an SVM with
a third-degree polynomial and a soft margin of 10 was optimal (see
Table 2). The percentages reported here are the result of 10-fold
tests reported separately over positive and negative examples. This
is useful, because sometimes the performance over the data set, and
the performance over the positives and negatives vary considerably.
Performance (in terms of percentage correct) over the positive and
negative examples are reported separately. As the correctly clas-
sified examples (true positives and true negatives) are in all cases
distributed over positives and negative data, we can say that in all
cases non-trivial models are found.

3.5 Feature importance

Feature importance is the determination of how much information
is given by each input. Feature importance is notoriously difficult
(Guyon & Elisseeff 2003). The reason for this is that, in different
combinations, features have different effects, so in reality impor-
tance is a combinatorial problem. In the case of a matching prob-

Table 2. Performance of algorithms and parameters.

Algorithm Soft margin Positive data Negative data Overall
(Kernel) (c)/hu per cent correct per cent correct per cent

correct

SVM 0.1 87.47 ± 2.24 98.70 ± 0.27 97.17
Linear 1 88.94 ± 2.43 98.75 ± 0.50 97.41

10 88.80 ± 2.44 98.80 ± 0.25 97.43

SVM 0.1 90.04 ± 0.31 99.04 ± 1.67 97.93
Poly 1 94.18 ± 1.91 99.44 ± 0.20 98.72
d = 2 10 96.02 ± 1.47 99.53 ± 0.29 99.05

SVM 0.1 94.91 ± 1.93 99.46 ± 0.27 98.84
Poly 1 96.24 ± 1.83 99.54 ± 0.20 99.09
d = 3 10 96.69 ± 1.26 99.50 ± 0.42 99.12*

SVM 0.1 89.39 ± 2.58 99.21 ± 0.27 97.87
RBF 1 93.66 ± 2.47 99.50 ± 0.28 98.70
γ = 1 10 95.43 ± 1.69 99.66 ± 0.17 99.08

Perceptron 86.81 ± 7.73 97.52 ± 2.78 96.05

Neural net hu = 3 93.81 ± 1.68 95.50 ± 1.41 95.27
hu = 4 94.10 ± 2.07 95.46 ± 1.38 95.27
hu = 5 93.50 ± 3.59 95.48 ± 1.26 95.21
hu = 6 93.45 ± 2.01 95.62 ± 1.23 95.32

Note: the errors reported are the standard deviation on the performance rate
found when doing a 10-fold test. The asterisk (*) denotes the model with
the best overall performance. The overall result takes into account that there
is approximately 6.3 times as much negative data as positive, this results
in more importance being required on classifying negative data correctly.
The overall percentage correct is given by the formula: Roverall = 0.1365 ×
Rpos + 0.8635 × Rneg. In the second column, hu refers to hidden units in a
neural network.

lem, the combinatorial nature is emphasized because inputs are of
interest in the amount that they correlate with other inputs.

The measuring of the importance of the input is also highly tied to
the problem of estimating the classification model. Adding features
can make the estimation more difficult as a result of the curse of
dimensionality.1 This has the potential to make the addition of useful
features reduce overall classification performance.

The construction of our learning problem leads to some unusual
characteristics. The positive learning vectors consist of variables
from the sparse catalogue and the dense catalogue joined together.
This means that the information from the sparse catalogue is re-
peated for every entry candidate match in the dense catalogue. Sim-
ulations on input importance have shown that optical parameters
alone are often sufficient to achieve moderate classification. In this
case, we obtain a classification of 94 per cent. At the outset of this
project, it was hoped that there would exist relationships between
the radio and optical parameters that would aid in classification.
This simulation shows that, a priori, rejection of objects (stars and
galaxies) from the dense catalogue is a more powerful element of
this problem.

A special mismatched data set was introduced to test the hypoth-
esis that radio data could contribute any useful information. The
data set consisted of the normal positive matches, plus a random
sample of radio sources matched to distant optical sources. The
separation feature was removed from this simulation. Without radio
information on this data set, 47 per cent classification was achieved,
while when radio information was added, classification improved to
72 per cent. This confirmed that relationships do exist between the
radio and optical parameters of these galaxies.

4 A P P L I C AT I O N O F T H E M O D E L
TO U N M AT C H E D DATA

In order to apply our binary classification model to a HICAT source,
it must be evaluated against every candidate match in the HICAT
region of uncertainty. This increases the chance of error from the
above estimate because many model evaluations are required. There
is also the chance that the classifier will find no matches, a single
match or multiple matches. The performance measures given pre-
viously were for binary classification problems. The statistics of
false positives and false negatives are highly related to, but are not,
measures of completeness and efficiency.

In order to see how well our model applies to the actual problem,
we examine only the unique velocity matches and test what agree-
ment level this has with HOPCAT. We take only the 1608 unique
velocity matches, out of 1887 (this has an immediate bearing on the
completeness of the catalogue). A sample of images of newly match-
ing objects is shown in Fig. 1. Of the 1608 only 9 are misclassified,
indicating that the catalogue has high efficiency.

Accurate estimates of completeness and efficiency are not pos-
sible in this case for three reasons. The training data and the data
to which we apply the model have slightly different distributions.
Our classifier output is a binary output over each output, allowing
for ambiguous situations such as multiple matches to exist. A cross-
validation method (taking in to account unique matches) should

1 The curse of dimensionality refers to the exponential increase of hyper-
volume as a function of dimension. Finding good models (discriminating
functions) that lie in a high-dimensional space, is known to be more difficult
than finding models in a lower dimensional space.
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Figure 1. A sample of the new matching objects.

be applied to produce this estimate. Finally, we do not know how
accurate the labels on our training data are (HOPCAT).

By ignoring cases of multiple matches, we are able to sacrifice
completeness for efficiency. We only get a false match when there
are exactly two matches (one false positive and one false negative).
This provides a level of error checking and means that the classifier
is not applied to the difficult or ambiguous examples.

It is noteworthy that an error here requires exactly two errors over
all the candidates and one of these must be on the match. The nine
misclassified objects are shown in Fig. 2. This provides a form of
error checking: if there are multiple matches then the chance that
either the classifier has failed or that the match is ambiguous is high.
A sample of images correctly classified are shown in Fig. 1 and the
nine images incorrectly classified are shown in Fig. 2.

HOPCAT contained 2221 objects that had insufficient informa-
tion to match. It is this data that we wish to extract new information
from, by matching it using machine learning.

The machine learning model found 1209 of these were as-
signed unique matches by the model. The high accuracy on the
test set suggests that a very high proportion of these matches are
correct.

A plot of radio flux against optical magnitude of the old and new
points is shown in Fig. 3. The new data points appear to follow the
same trend as the old data points. Although it is obvious that the
two distributions are different: the new points are more likely to
be fainter in both the optical and radio flux. This is most likely a
result of a selection effect where the training data contains brighter
objects. It appears that the model is successfully extrapolating to
fainter objects than the training data. The authors would like to

Figure 2. Misclassified objects. (a), (b) Spurious ellipses marked as
matches. (c), (d) and (e) Optical measurements of the velocities of the
galaxies show that machine learning chose the wrong galaxy. (f), (g) and
(h) Machine learning disagrees with HOPCAT, but there is insufficient in-
formation to establish which is correct. (i) A bright star at close proximity
is chosen as a match.
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Figure 3. Magnitude flux plot of old and newly obtained data points.

stress that the quality of the machine learning model should be
judged on the cross-validation performance, not the good agreement
found here.

The SuperCOSMOS catalogue goes deeper than HICAT. The
non-linear detection limits on HICAT can be seen in the distribution
of integrated flux (Sint) in Fig. 4 and peak flux (Sp) in Fig. 5. The
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Figure 4. Distribution of integrated flux (Sint).
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Figure 5. Distribution of peak flux (Sp).

effect of this threshold is that objects with an Sint < 0.5 Jy km s−1

are under represented in Fig. 3, while the limit on optical magnitude
is low enough to have negligible effect. This may be responsible for
a subtle curve upwards for the faint end of the spectrum in Fig. 3.

Over the 216 blank fields, 6 (3 per cent) had one or more match
on them. This gives a rough indication of the frequency of false
positives.

5 D I S C U S S I O N

The matching of catalogues can be framed as a supervised learning,
pattern classification problem. Despite differences between match-
ing and pattern classification, the algorithms performed remarkably
well on this data, showing performance over 99 per cent. The model
we found produced the most discriminating power from the optical
(dense) catalogue, however we were able to show that important
relations existed between the two catalogues.

This method was successful in generating 1209 new matches to
HOPCAT, bringing the total number of matches to 3096 out of 4315.
For a significant portion of the HICAT sources, it is difficult or im-
possible to find a match because there are many optical counterparts;
or the optical counterparts are obscured by the zone of avoidance.

The quality of both the source of the training data (HOPCAT)
and the additional counterparts found using machine learning need
to be verified using high-resolution radio data from the Australian
Telescope Compact Array. Verification of some or all of the data
would further validate the methods used here.

This work uncovers a number of new avenues to investigate
further. There are simple methods that could be applied to get a
probability that each candidate is a match. This would allow as-
sumptions such as allowing at most one match to be built in to the
classifier.

The selection effects that could be caused by such a method are
potentially complex. The newly matched data points are likely to
show similarity to points in the training data. This opens up two
questions. First, if we do not have any rare objects in the training
data, then we are probably unlikely to find these objects in the newly
matched data. Moreover, if our new data points resemble our old
data points, what aspects of the new distribution of points are simply
resemblance to the old data and what aspects are giving us new
information, not in the original sample?
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